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aUniversité Louis Pasteur, Laboratoire de Physique Théorique
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cForschungszentrum Jülich, Institut für Kernphysik (Theorie)
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1. Introduction

Recent years have seen a substantial growth of interest in the calculation of excited baryon

spectra in lattice QCD [1 – 11] that has largely been motivated by the present experimental

programs at Jefferson Lab [12] and ELSA [13] (for the latest lattice reviews, see e.g. [14 –

17]). In general, the procedure of extracting resonances from lattice QCD data differs from

the one used in the stable particle case, since resonances do not correspond to isolated

energy levels of the total Hamiltonian. The standard approach, originally proposed by

Lüscher [18 – 21] (see also [22 – 24]), is based on studying the volume dependence of the

spectrum being determined by the two-body scattering phase shift in the infinite volume.

Near the resonance energy, where the phase shift rapidly passes through π/2, an abrupt

rearrangement of the energy levels known as “avoided level crossing” takes place. It has

been argued that the observation of this phenomenon in lattice data can serve as a signal of

the presence of a resonance and enables one to determine its parameters. In refs. [25 – 27]

the approach has been further generalized for moving frames. Note also that Lüscher’s

approach has been recently applied to study nucleon-nucleon phase shifts at low-energy, as

well as two-body shallow bound states [28 – 32].

As alternative approaches to this procedure we mention, e.g., ref. [33], where it has

been shown that the presence of a narrow excited state above the threshold modifies the

simple exponential decay law of the time-sliced two-point function. The decay width within

this approach is extracted not from the two-point function, but directly from the decay

amplitudes (see also [34, 35]). In addition, in ref. [36] it was proposed to reconstruct the

spectral density in the two-point function by using the maximum entropy method. This
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approach, in principle, also has the capability to address the problem of unstable states in

lattice calculations.

It turns out that the lowest-mass strongly interacting unstable particles in nature, the

ρ(770), the ∆(1232)-resonance, etc,1 due to their large width can not be identified with a

clearly visible bifurcation in the energy levels. Namely, predicting the volume dependence

of the pertinent energy levels by using the experimentally measured ππ and πN phase

shifts, it is seen that the avoided level crossing is almost completely washed out. In this

case, it is natural to ask, whether the resonance parameters which will be extracted by

fitting Lüscher’s formula to the lattice data, can be determined at a reasonable accuracy

and will be devoid of any bias. The issue of accuracy becomes particularly important since

in forthcoming lattice calculations resonance parameters will be fitted to a few available

data points. For example, in ref. [37] the parameters of the ρ-meson have been determined

performing a fit of Lüscher’s formula (in a moving frame) only to two data points. We

believe that with more data on resonances expected to come, this question should be

urgently addressed.

In a previous paper [38] we have studied the problem in the case of the ∆-resonance.

Invoking chiral effective field theory with explicit spin-3/2 degrees of freedom, we have

parameterized the volume-dependent energy spectrum of the total Hamiltonian in terms

of the ∆-resonance mass and width up to third order in the so-called small scale expansion

(see, e.g. [39, 40]). On the basis of a detailed analysis of the behavior of the two lowest

energy levels, it was concluded that an accurate extraction of the ∆-resonance parameters

is indeed a feasible task, despite the fact that the avoided level crossing is completely

washed out.

In the present paper we address the same problem within non-relativistic effective

field theory (NR EFT) in a finite volume, which enables one to carry out the analysis in

a more general way.2 The equation that determines the location of the eigenvalues of the

Hamiltonian in this framework coincides with Lüscher’s formula. In order to facilitate the

analysis, we further define a so-called probability distribution, which is constructed from

the volume-dependent energies. The central observation is that the probability distribution

in the vicinity of a resonance behaves much like the infinite-volume scattering cross section:

it peaks at the resonance energy. The peak has approximately a Breit-Wigner shape, with

the same width as the original resonance. We will show in the following that in case

of a wide resonance, when the avoided level crossing is washed out, one still observes a

clear resonance structure in the probability distribution after subtracting the background

corresponding to the free motion of the decay products. This result unanimously supports

the conclusion of ref. [38]: the extraction of both the energy and width of the ∆-resonance

from the volume-dependent spectrum by using Lüscher’s formula is feasible. Note also

that, as shown in the present paper, this goal can be achieved even by fitting to the data

for the lowest energy level alone.

1We eschew here the σ(600) since at present there is no consensus about the precise nature of this

resonance.
2Some of the results of this paper have been reported previously [41].
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An important issue, which we do not discuss in the present paper, concerns the quark

mass dependence of the resonance observables and the energy spectrum. For the values of

the pion masses, which are used in present day calculations, the volume dependence of the

energy levels may qualitatively differ from what happens at the physical value of the pion

mass. For example, at higher pion masses the ∆-resonance becomes stable and the peak in

the probability distribution degenerates into a δ-function. Our approach, combined with

chiral perturbation theory, is flexible enough to describe this continuous transition. We,

however, relegate a detailed discussion of this question to a separate publication [42].

The layout of the present paper is the following. In section 2 we consider the NR EFT

for the πN system and derive Lüscher’s formula for spin-0 particle scattering on a spin-1/2

particle. Section 3 contains the reduction of Lüscher’s formula, using the cubic symmetry

of the lattice. In section 4 we introduce the notion of the probability distribution and

discuss its properties, as well as the infinite-volume limit. Finally, section 5 contains an

analysis of (synthetic) lattice data, performed with the use of the probability distribution

technique. We end with a summary and conclusions in section 6. Some technicalities are

relegated to the appendices.

2. Non-relativistic EFT for the pion-nucleon system in a finite volume

Lüscher’s formula, which relates the infinite-volume elastic phase shift to the finite-volume

two-particle energy spectrum, is derived in large volumes. Namely, the size of the three-

dimensional box L, in which the two-particle system is placed, should be much larger than

the typical scale M−1
π set by the mass of the lightest particle (the pion in our case), in order

to be able to discard all exponentially suppressed contributions at large L. For such large

volumes, NR EFT provides an adequate description of the system at low energies. Lüscher’s

formula within NR EFT can be straightforwardly obtained (see, e.g. [28]). In this section

we briefly describe the generalization of the method to the case of particles with spin.

Although the approach is completely general, below we shall focus on the example of pion-

nucleon scattering. We shall use the covariant formulation of the NR EFT, introduced in

refs. [43]. The relativistic kinematics is taken into account automatically in this formulation

that, in particular, may prove advantageous for generalizing Lüscher’s approach to moving

frames. A recent general introduction to the NR EFT can be found, e.g. in ref. [44].

The derivation consists of two parts. In the first part we set up the framework by

considering the pion-nucleon scattering process in dimensionally regularized NR EFT in

the infinite volume. To ease the notation, we suppress the isospin indices everywhere in

the following, considering the scattering process in a channel with fixed total isospin. The

non-relativistic Lagrangian takes the form

L = Φ† 2Wπ(i∂t − Wπ)Φ + Ψ† 2WN (i∂t − WN )Ψ + LI , (2.1)

where Φ and Ψ denote the non-relativistic pion and nucleon fields, respectively. Further,

Wπ = (M2
π − ∇2)1/2 and WN = (m2

N − ∇2)1/2, with Mπ and mN the physical masses of

the pion and the nucleon, in order. The πN interaction Lagrangian LI contains a tower

of local 4-particle operators with increasing powers of space derivatives. The number of
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heavy particles is conserved. The coupling constants in LI encode the whole information

about the high-energy behavior of the theory and are determined through matching to the

effective-range expansion of the physical amplitudes.

The non-relativistic pion and nucleon propagators are given by

Sπ(p) =
1

2wπ(p)

1

wπ(p) − p0 − i0
, SN (p) =

1

2wN (p)

1

wN (p) − p0 − i0
, (2.2)

where wπ(p) = (M2
π + p2)1/2 and wN (p) = (m2

N + p2)1/2.

The Lagrangian in eq. (2.1) generates loops through the usual Feynman diagrammatic

technique. In order to ensure power counting and relativistic covariance, Feynman rules

are supplemented with an additional prescription [43]: the integrands in all Feynman

integrals are expanded in the inverse powers of masses, integrated by using dimensional

regularization and finally summed up again to all orders. In the two-particle sector, which

is considered here, this procedure is straightforward, since all loop contributions can be

expressed through the basic bubble integral

J(s) = −i

∫

dDl

(2π)D
1

2wπ(l)2wN (P − l)

1

(wπ(l) − l0)(wN (P − l) − P 0 + l0)

=
iq(s)

8π
√

s
+ O(d − 3) , q(s) =

λ1/2(s,M2
π ,m2

N )

2
√

s
, s = P 2 , (2.3)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx denotes the triangle function, D is the

number of space-time dimensions and d = D − 1.

Using canonical formalism, the full Hamiltonian of the πN system H = H0 + HI can

be constructed from the Lagrangian (2.1). The scattering matrix T(z) is defined through

the Lippmann-Schwinger (LS) equation

T(z) = (−HI) + (−HI)(−G0(z))T(z) , (2.4)

where G0(z) = (z−H0)
−1 is the free resolvent of the πN system. Note that we have chosen

to introduce negative signs in the above equation, in order to take into account the different

sign conventions for the T -matrix in the field theory and in the potential scattering theory.

Next, we define the center-of-mass (CM) and relative momenta of the pion-nucleon

pair, P and k, respectively,

pN =
mN

mN + Mπ
P + k , pπ =

Mπ

mN + Mπ
P − k . (2.5)

The pion-nucleon states are given by

|(pNν),pπ〉 = |P,k, ν〉 , (2.6)

where the index ν labels the nucleon spin. The normalization of the states is fixed by

〈P′,k′, ν ′|P,k, ν〉 = 2wN (pN )2wπ(pπ)δν′ν(2π)dδd(P′ − P)(2π)dδd(k′ − k) . (2.7)
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We remove the CM momentum in the matrix elements by defining

tν′ν(k′,k; z) =

∫

ddP′

(2π)d
〈P′,k′, ν ′|T(z)|0,k, ν〉 ,

hν′ν(k
′,k) = −

∫

ddP′

(2π)d
〈P′,k′, ν ′|H|0,k, ν〉 . (2.8)

The LS equation in the CM frame takes the form

tν′ν(k
′,k; z)=hν′ν(k

′,k)+
∑

ν′′

∫

ddk′′

(2π)d
1

2ωN (k′′)
1

2ωπ(k′′)
hν′ν′′(k′,k′′)tν′′ν(k

′′,k; z)

ωN (k′′) + ωπ(k′′) − z
. (2.9)

Since hν′ν(k
′,k) is (an infinite) polynomial in momenta, by using eq. (2.3) the above

equation simplifies to

tν′ν(k
′,k; z) = hν′ν(k

′,k) +
iq(z2)

32π2z

∑

ν′′

∫

dΩk′′ hν′ν′′(k′, k̃′′) tν′′ν(k̃
′′,k; z) , (2.10)

where dΩk′′ stands for the integral over the 3-dimensional solid angle and

k̃′′ =
k′′

|k′′|
λ1/2(z2,M2

π ,m2
N )

2z
. (2.11)

Note that, since the pion-nucleon loop in eq. (2.3) is finite at d → 3, one may set d = 3 in

eq. (2.10). All terms that vanish in dimensional regularization after performing the expan-

sion in the inverse powers of masses are disregarded. The partial-wave expansion proceeds

then in the standard manner. It is carried out in terms of spinor spherical harmonics

defined by

YL 1

2

JM (k̂, ν) =
∑

mlms

〈Lml
1

2
ms|JM〉Y L

ml
(k̂)χms

(ν) , (2.12)

where k̂ = k/|k| and Ylm(k̂) and χms
(ν) are the Legendre spherical function and the

two-component nucleon spinor, respectively. The quantity 〈Lml
1
2 ms|JM〉 stands for the

pertinent Clebsch-Gordan coefficient.

Introducing for convenience the projectors

ΠJL
ν′ν(k̂

′, k̂) =
∑

M

(

YL 1

2

JM (k̂′, ν ′)

)∗
YL 1

2

JM (k̂, ν) , (2.13)

the partial wave expansion can be written as

tν′ν(k′,k; z) = 4π
∑

JL

ΠJL
ν′ν(k̂

′, k̂)tJL(k′, k; z) ,

hν′ν(k
′,k) = 4π

∑

JL

ΠJL
ν′ν(k̂

′, k̂)hJL(k′, k) . (2.14)

On the mass shell, k = k′ and z(k) = (M2
π +k2)1/2 +(m2

N +k2)1/2, the scattering amplitude

and the matrix element of the Hamiltonian can be expressed through the elastic scattering
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phases δJL(k) in a standard manner

tJL(k, k; z(k)) =
8πz(k)

k

exp (2iδJL(k)) − 1

2i
,

hJL(k, k) =
8πz(k)

k
tan δJL(k) . (2.15)

At the next step we consider the same system placed in a finite cubic box L×L×L. The

Feynman rules in a finite volume remain the same, except that the momentum integration

everywhere is now replaced by a discrete sum

∫

ddk′′

(2π)d
→ 1

L3

∑

k′′

, k′′ =
2πn

L
, n ∈ Z

3 . (2.16)

Our aim is to find the finite-volume energy spectrum of the system described by the Lag-

rangian (2.1). To this end, note that the location of the eigenvalues of the Hamiltonian in

a finite volume coincides with the (real) poles of the operator T(z), defined by eq. (2.4), in

a complex z-plane. After removing the CM momentum, this equation becomes similar to

eq. (2.9), but with the integration replaced through the momentum sum, as in eq. (2.16).

The ultraviolet divergence can be most conveniently tamed by analytic regularization [19].

In the following, we do not indicate the regularization explicitly.

The resulting equation can again be expanded in partial waves. Since the rotational

symmetry in the infinite volume is now broken down to a cubic symmetry, the partial

wave expansion of the matrix elements of the operator T(z) will not be diagonal in J ,L

and M anymore. In order to ease the notations, it is useful to introduce the multi-index

A = (J,L,M). Defining the operators

ΠA′A
ν′ν (k̂′, k̂)

.
=

(

YL′ 1

2

J ′M ′(k̂′, ν ′)

)∗
YL 1

2

JM(k̂, ν) , (2.17)

the partial wave expansion can be written as

tν′ν(k
′,k; z) = 4π

∑

A′A

ΠA′A
ν′ν (k̂′, k̂)tA′A(k′, k; z) ,

hν′ν(k
′,k) = 4π

∑

A′A

ΠA′A
ν′ν (k̂′, k̂)hA′A(k′, k) . (2.18)

Further, since hA′A(k′, k) is calculated from the non-relativistic Lagrangian at tree level, it

coincides with its infinite-volume counterpart and is diagonal

hA′A(k′, k) = δA′AhA(k′, k) = hJL(k′, k)δJ ′JδL′LδM ′M . (2.19)

Next, in analogy with the infinite-volume case, one may derive the equation for the on-shell

quantities. To this end, note that the off-shell contribution to the LS equation is expo-

nentially suppressed by the box size L, since the singular energy denominator is canceled

in this contribution (for the proof of this statement, see, e.g. [26]). Thus, up to these
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exponentially suppressed terms, the partial-wave expanded LS equation in a finite volume

can be rewritten as

tA′A(k, k; z(k)) − δA′AhA(k, k) =
k

8πz(k)

∑

A′′

hA′(k, k)MA′A′′(k)tA′′A(k, k; z(k)) ,

(2.20)

where we have defined

MA′A(k) = MJ ′L′M ′,JLM (k) =
16π2

k

1

L3

∑

k′′

∑

ν

(

YL′ 1

2

J ′M ′(k̂′′, ν)

)∗
YL 1

2

JM(k̂′′, ν)

k′′2 − k2
. (2.21)

Note that in deriving eqs. (2.20), (2.21) we have brought the energy denominator of eq. (2.9)

to the non-relativistic form (q2 − k2)−1, eliminating the square roots by multiplying the

numerator and the denominator in this equation by the same algebraic expression and

neglecting off-shell terms, which are exponentially suppressed.

The quantity MJ ′L′M ′,JLM(k) is related to its counterpart for spin-zero particles [19],

according to

MJ ′L′M ′,JLM (k) =
∑

m′mσ

ML′m′,Lm(k) 〈L′m′ 1

2
σ|J ′M ′〉〈Lm

1

2
σ|JM〉 , (2.22)

where [19]

ML′m′,Lm(k) =
(−)L

′

π3/2

L+L′

∑

j=|L−L′|

j
∑

s=−j

ij

κj+1
Zjs(1;κ

2)CL′m′,js,Lm , (2.23)

with κ = kL/(2π) and

Zlm(t;κ2) =
∑

n∈Z3

|n|l Ylm(n̂)

(n2 − κ2)t
. (2.24)

The coefficients CL′m′,js,Lm are expressed through the Clebsch-Gordan coefficients

CL′m′,js,Lm = iL
′−j+L

√

(2L′ + 1)(2j + 1)

(2L + 1)
〈L′0 j0|L0〉〈L′m′ js|Lm〉 . (2.25)

Due to eq. (2.22) and the symmetry properties of ML′m′,Lm (see [19]), one finds that

MJLM,J ′L′M ′ = MJ ′L′M ′,JLM . (2.26)

The quantity tA′A(k, k; z(k)) defined by the finite-volume LS equation (2.20) develops poles

at the momenta where the determinant of this linear system of equations vanishes. Ex-

pressing hJL(k, k) through the infinite-volume phase shift according to eq. (2.15), we finally

obtain the Lüscher formula for pion-nucleon scattering

det
[

tan δJ ′L′(k)MJ ′L′M ′,JLM(k) − δJ ′JδL′LδM ′M

]

= 0 . (2.27)

This formula relates the location of the energy eigenvalues of the pion-nucleon system,

placed in a finite box, to the infinite volume partial-wave phase shifts.

In analogy to ref. [19], it is possible to use the cubic symmetry on the lattice in order to

achieve the partial block-diagonalization of the matrix MJ ′L′M ′,JLM(k). Such a reduction

will be considered in the next section.
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3. Reduction of Lüscher’s formula

In the infinite volume, the basis vectors of the irreducible representation DJ of the

rotation group, corresponding to the total momentum J , are given by |JLM〉 =
∑

ms |Lm 1
2 s〉〈Lm 1

2 s|JM〉. Here, J = 1
2 , 3

2 , . . ., M = −J, . . . J and L = J ± 1
2 . The

vectors |JLM〉 are also parity eigenvectors with the eigenvalue P = (−)L. Below, we shall

use a notation where the parity is explicitly indicated |JLM〉 = |JM〉±.

In a finite volume, for the case of particles with the half-integer spin, the symmetry

breaks down to 2O ⊗ S2, where 2O denotes the double cover of the cubic group containing

48 elements, no reflections included (see, e.g. [45]) and S2 is the discrete group of space

inversions. The irreducible representations of this group are G±
1 , G±

2 and H± (see ap-

pendix A for details). The linear space spanned by the vectors |JM〉± forms a basis of a

reducible representation of the group 2O⊗S2. We denote the basis vectors, corresponding

to the irreducible representations, as

|Γ, α, J, n〉± , α = 1, . . . dim Γ , n = 1, . . . N(Γ, J) . (3.1)

Here, Γ = G1, G2 or H, N(Γ, J) denotes the multiplicity of the irreducible representation

Γ± in DJ and the index α labels the vectors of a particular irreducible representation.

The basis vectors |Γ, α, J, n〉± can be expressed through linear combinations of |JM〉±

|Γ, α, J, n〉± =
∑

M

cΓnα
JLM |JM〉± . (3.2)

The matrix elements of the operator M(k) in the new basis are given by

±〈Γ′, α′, J ′, n′|M(k)|Γ, α, J, n〉± =
∑

M ′M

(cΓ′n′α′

J ′L′M ′)∗ cΓnα
JLM MJ ′L′M ′,JLM (k) . (3.3)

According to Schur’s lemma, the operator M(k) is partially diagonalized in the new basis

±〈Γ′, α′, J ′, n′|M(k)|Γ, α, J, n〉± = δΓ′Γδα′α[MΓ
±(k)]Jn,J ′n′ (3.4)

and equation (2.27) is rewritten as

∏

L′=J ′± 1

2

∏

Γ

det

(

tan δJ ′L′(k)[MΓ
±(k)]J ′n′,Jn − δJ ′Jδn′n

)

= 0 , (3.5)

where the +/− sign in MΓ
± corresponds to even/odd L′.

In table 1 we list the matrix elements [MΓ
±(k)]J ′n′,Jn for J ′, J < 9

2 . Since the multi-

plicity N(Γ, J) = 1 for J < 9
2 , the indices n′, n can be omitted in this table. The entries of

the table are expressed through the following quantities [19]

Wlm =
(

π3/2(2l + 1)1/2κl+1
)−1

Zlm(1;κ2) . (3.6)

The construction of the basis vectors in case of arbitrary J is considered in appendix A.
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Γ± J J ′ MΓ
±(k)

G±
1 1/2 1/2 W00

G±
1 1/2 7/2 ∓4

√
21

7 W40

G±
1 7/2 7/2 W00 + 18

11 W40 + 100
33 W60

G±
2 5/2 5/2 W00 − 12

7 W40

G±
2 5/2 7/2 ±60

√
3

77 W40 ∓ 40
√

3
11 W60

G±
2 7/2 7/2 W00 − 162

77 W40 + 20
11 W60

H± 3/2 3/2 W00

H± 3/2 5/2 ∓6
√

6
7 W40

H± 5/2 5/2 W00 + 6
7 W40

H± 3/2 7/2 2
√

30
7 W40

H± 5/2 7/2 ∓36
√

5
77 W40 ∓ 20

√
5

11 W60

H± 7/2 7/2 W00 + 18
77 W40 − 80

33 W60

Table 1: Non-vanishing matrix elements [MΓ

±(k)]Jn,J′n′ for J , J ′ < 9/2 and n = n′ = 1. The

matrix is symmetric under J ′n′ ↔ Jn.

4. Probability distribution

As mentioned in the introduction, in the vicinity of a narrow resonance the finite-volume

energy levels of a two-particle system exhibit the peculiar behavior known as the avoided

level crossing. Such a behavior, which is predicted by Lüscher’s formula, is schematically

shown in figure 1. In this figure, we plot the relative momentum p, which is related to

the CM energy E as E = (m2
N + p2)1/2 + (M2

π + p2)1/2, vs the box size L. The plateaus

correspond to the resonance energy and the resonance width is determined by the minimal

distance between the curves.

It was, however, also mentioned above that for most physically interesting strong

resonances the avoided level crossing is almost completely washed out from the spectrum

due to the large width of a resonance. In this section, we describe a method that can be used

to visualize the extraction of the resonance parameters from the two-particle spectrum even

in this case. What is important is that the method does not contain any prior theoretical

bias (e.g. does not use the resonance parameterization of the infinite-volume scattering

phase as an input).

Assume now that the volume-dependent two-particle spectrum is measured on the

lattice. The probability distribution W (p) is constructed according to the following pre-

scriptions:

(i) Choose the first N energy levels (e.g., N = 2 in figure 1); choose the interval L ∈
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Figure 1: Schematic plot describing the construction of the probability distribution from the

energy levels.

[L1, L2] and slice this interval into equal parts with length ∆L. For each value of

L = L1, L = L + ∆L, etc determine pn(L), n = 1 · · ·N .

(ii) Choose a corresponding momentum interval p ∈ [p1, p2] and introduce equal-size

momentum bins with length ∆p.

(iii) Count, how many times the eigenvalue pn(L), n = 1 · · ·N is contained in a partic-

ular bin, if L runs from L1 to L2. This number gives the unnormalized probability

distribution for the momentum bin chosen. Normalizing this distribution in the in-

terval [p1, p2] yields finally the probability distribution W (p) we are looking for. The

normalization condition is given by

MP
∑

k=0

W (p1 + k∆p)∆p = 1 , MP =
p2 − p1

∆p
− 1 . (4.1)

It is clear that in case of a pronounced avoided level crossing, the probability distri-

bution W (p) must be strongly peaked around the resonance energy. The exact shape of

W (p) can be predicted on the basis of Lüscher’s formula. To this end, note that, in the

limit of infinitesimally small L− and p− bins, W (p) is given by

W (p) = C
N

∑

n=1

1

p′n(L)
, (4.2)

where C is a normalization constant.

For simplicity, we consider here the scattering in the partial wave with L = 1, J = 3
2

and neglect the (small) mixing to higher partial waves. Using table 1 and eq. (3.5), the
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relation between the finite-volume energy spectrum and the phase shift δ(p) takes the form3

δ(p) = −φ(κ) + πn, φ(κ) = − arctan
π3/2κ

Z00(1;κ2)
, κ =

pL

2π
, (4.3)

where the integer n labels the energy levels pn(L), which are the solutions of the above

equation.

Differentiating now eq. (4.3) with respect to L and substituting into eq. (4.2), we obtain

W (p) = C

N
∑

n=1

(

Ln(p)

p
+

2πδ′(p)

pφ′(κn(p))

)

. (4.4)

where κn(p) and Ln(p) are the solutions of eq. (4.3) for a given p. It is seen that W (p)

defined by eq. (4.4) is closely related to the so-called “density of states in a finite volume,”

see e.g. ref. [46].

In the vicinity of the resonance, δ′(p) is strongly peaked. Substituting a Breit-Wigner

parameterization for δ(p) and assuming that all other factors smoothly depend on the

momentum p, we may verify that in the vicinity of the resonance the function W (p) follows

the Breit-Wigner form for the scattering cross section, with the same width.4

A useful parameterization of W (p) can be obtained by using the following approxima-

tion of the function φ(κ), which is valid in a large interval of arguments [20]

φ(κ) = πcκ2 , c ≃ 1 . (4.5)

Solving Lüscher’s equation, we obtain

Ln(p) =
1

p

√

4π(πn − δ(p)) (4.6)

and

W (p) =
C

p

N
∑

n=1

(

√

4π(πn − δ(p))

p
+

2πδ′(p)
√

4π(πn − δ(p))

)

. (4.7)

In order to suppress the (large) background, related to the free motion of the πN pair, we

consider in the following the so-called subtracted probability distribution W (p) − W0(p),

where W0(p) is determined from eq. (4.4) with δ(p) = 0 and Ln(p) corresponding to the

free energy levels.

It is interesting to consider the infinite-volume limit of the probability distribution.

Note that in this limit the number of energy levels per fixed momentum bin goes to infinity.

Consequently, the number of levels N in eq. (4.3) can be chosen very large. In this case, in

the expression for the quantity Ln(p) which is determined through the solution of Lüscher’s

equation

Ln(p) =
2π

p
φ−1 (πn − δ(p)) , (4.8)

3To ease notation, we do not attach indices L, J to this phase shift.
4Note that the location of the maximum in the probability distribution does not, in general, coincide

either with the real part of the pole position in the amplitude, or with the solution of the equation δ(pR) =

π/2. These three quantities agree only in the limit of the infinitely narrow resonance.

– 11 –
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Figure 2: Volume dependence of the spectrum of the Hamiltonian (solid lines), predicted by using

Lüscher’s formula with input experimental P33 phase shift. The center-of-mass momentum p vs the

box size L is shown. For comparison, the free energy levels for the πN system are given (dashed

lines). The horizontal line marks the position of the ∆ resonance. It is seen that the avoided level

crossing is completely washed out.

the phase shift obeys the inequality δ(p) ≪ πn for the large majority of terms in the sum

over energy levels. Expanding in a Taylor series, we get

Ln(p) =
2π

p
κ̄n − 2π

p
δ(p)

1

φ′(κ̄n)
+ O(δ2) , (4.9)

with κ̄n is the solution of the equation φ(κ̄n) = πn. Using, in addition, κn = κ̄n + O(δ),

the unnormalized probability distribution for N → ∞ takes the form

C−1W (p) =
2π

p2

N
∑

n=1

κ̄n +
2π

p

N
∑

n=1

1

φ′(κ̄n)

(

δ(p)

p
− δ′(p)

)

+ O(δ2) . (4.10)

The first term exactly coincides with the free background. Subtracting this background

and taking into account the fact that the quantity
∑N

n=1(φ
′(κ̄n))−1 does not depend on

the phase δ(p), we obtain

C−1W (p) − C−1
0 W0(p) ∝ 1

p

(

δ(p)

p
− δ′(p)

)

. (4.11)

In other words, in the infinite-volume limit this quantity is determined by the elastic phase

shift alone.

5. Analysis of synthetic data

In this section we will implement the method discussed in the previous section for analyzing

data. In the absence of lattice QCD data we will use synthetic data on the spectrum of
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Figure 3: Unsubtracted (left panel) and subtracted (right panel) probability distributions. Only

the lowest energy level has been included in the analysis (N = 1). The solid lines correspond to

the prediction made by using Lüscher’s formula with an approximation φ(κ) ≃ πκ2 (see the text

for details). A clear resonance-like structure is observed in the subtracted distribution.
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Figure 4: The same as in figure 3 but obtained only from 5 data points corresponding to MπL =

1.4, 2.55, 3.7, 4.85, 6. The values of the function p(L) between the data points are obtained using

Spline interpolation. Only the lowest energy level is analyzed (N = 1). The interval in the variable

p is the same as in figure 3. It is seen that 5 data points do not provide a very good accuracy over

this interval in L: the subtracted probability distribution is rather different from the theoretical

prediction made on the basis of Lüscher’s formula.

the Hamiltonian, which are produced by using experimentally measured phase shifts [47]

in Lüscher’s formula. If in the future unquenched lattice calculations are performed at the

physical quark masses, the results must agree with the above synthetic data set.

The calculated spectrum, obtained by substituting the resonant P33 partial wave phase

shift into Lüscher’s formula, is shown in figure 2. In this figure, the relative momentum

of the πN system p(L), corresponding to the discrete energy levels of the Hamiltonian

in a finite box, is plotted against the box size L (in units of M−1
π ). It is seen that the

structure of the energy levels is smooth: the avoided level crossing has been completely

washed out due to the relatively large width of ∆. However, in the same figure we also

plot the free energy levels, demonstrating that in the vicinity of the resonance a continuous

rearrangement of the spectrum takes place.

This rearrangement can be made explicitly visible by performing the analysis of the
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Figure 5: The subtracted probability distribution for 10 data points equally distributed in the

interval MπL = 1.4 · · · 6 (left panel). The same with 5 data points, MπL = 1.9 · · ·4.5 (right panel).

In both cases, only the lowest energy level has been included in the analysis (N = 1). The agreement

with the theoretical curve, based on Lüscher’s formula, is much better than for figure 4 (right panel).

energy spectrum, using the probability distribution method introduced above. Construct-

ing, as described above, the unsubtracted probability distribution W (p) from the lowest

energy level yields the plot shown on the left panel of figure 3. The resonance is seen

as a barely distinguishable shoulder around p ≃ 0.22 GeV. This result, which obviously

reflects the washing-out of the avoided level crossing in figure 2, casts justified doubts on

the feasibility of a clean extraction of the ∆-resonance parameters from the data. The

picture, however, completely changes once the subtraction of the background due to free

πN pairs has been performed, see the right panel in figure 3. The resonance-like structure

in the subtracted distribution is clearly visible, allowing one to finally conclude that the

determination of the resonance parameters from the data is indeed possible. On both plots

the solid curves correspond to the theoretical prediction made on the basis of Lüscher’s

formula. In order to simplify the numerical calculations, the curves were constructed by

using the approximation φ(κ) ≃ πκ2, which works very well for all relevant values of the

variable κ. Since these curves are shown for the demonstrative purposes only, a better

accuracy is not needed here.

Up to now, we have dealt with the exact solution of Lüscher’s equation for the energy

spectrum that on the lattice corresponds to measuring this spectrum at infinite accuracy

and at all values of L. The situation in real calculations is different. Here one expects

to get at most a few data points for different volumes. Our next aim is to mimic this

situation in the calculations with the synthetic data and check whether the extraction of

the resonance parameters is still possible. The probability distribution method, which we

are using, is equivalent to Lüscher’s approach and provides just a nice tool to visualize the

final result.

In order to achieve the goal formulated above, we first perform the analysis in the

same momentum interval as in figure 3, but using 5 uniformly distributed data points,

located at MπL = 1.4, 2.55, 3.7, 4.85, 6. The values of p(L) between these data points

were reconstructed by using the interpolation procedure with cubic splines. The result for

the unsubtracted and subtracted probability distributions is shown in figure 4. It is clear
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Figure 6: A non-uniform choice of the data points MπL = 1.4, 1.6, 1.8, 2.8, 3.9. The momentum

interval is chosen to be p ∈ [0.21, 0.35] GeV. It is immediately seen that the subtracted probability

distribution deviates from the theoretically predicted behavior in the interval where the data points

are sparse (large volumes or small momenta).

that providing only 5 data points at this quite large interval of the variable L does not

ensure a very high accuracy: the shape of the resonance comes out distorted. Moreover,

one might expect that if even less data points are included in the analysis (see, e.g. [37]),

the determined resonance parameters will include large systematic uncertainty which is

very hard to control.

There can be two possible ways out. One may try to gradually increase the number

of data points, or one may try to reduce the size of the momentum and volume interval

just to an immediate proximity of the resonance. Both possibilities have been tried, as

shown in figure 5. The left panel of this figure corresponds to using 10 data points instead

of 5 in the same interval, whereas the right panel corresponds to reducing the interval to

MπL ∈ [1.9, 4.5], respectively. In both cases one observes a clear improvement as compared

to the case shown in figure 4. Note also that the data points should not not be uniformly

distributed in L, but have indeed to be concentrated on both sides of the resonance.

Otherwise, one may arrive to the picture shown in figure 6, where we show the probability

distribution, obtained from the following data points: MπL = 1.4, 1.6, 1.8, 2.8, 3.9. It

is seen that the probability distribution significantly deviates from the exact theoretical

prediction in that part of the interval, where the data points are sparse.

Finally, we have applied the method of probability distributions to the simultaneous

analysis of the first two energy levels. The figure 7 contains the information about 10 data

points, uniformly distributed in the interval MπL ∈ [2, 6.5]. The resulting resonance shape

is again in good agreement with the theoretical prediction, made on the basis of Lüscher’s

formula. Note that the resonance parameters extracted from the analysis of the different

energy levels must of course coincide. In case the data from the excited levels are also

available, checking the stability of the resonance parameters might enable one to verify a

posteriori, whether the volumes, used in the calculation, are large enough to justify the

application of Lüscher’s approach.

Last but not least, the lattice data on the measured spectrum always come with errors.
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Figure 7: The result of the analysis of the lowest two energy levels (N = 2) with 10 data points,

MπL = 2 · · · 6.5. The resonance structure reasonably reproduces the theoretical prediction on the

basis of Lüscher’s formula.

0.18 0.2 0.22 0.24 0.26

p [GeV]
0

1

2

3

4

5

6

7

W
(p

)-
W

fr
ee

(p
)

 5 points, ε=0.1 %

0.18 0.2 0.22 0.24 0.26

p [GeV]
0

2

4

6

8

W
(p

)-
W

fr
ee

(p
)

 5 points, ε=0.25 %

0.18 0.2 0.22 0.24 0.26

p [GeV]
0

5

10

W
(p

)-
W

fr
ee

(p
)

 5 points, ε=0.5 %

0.18 0.2 0.22 0.24 0.26

p [GeV]
0

1

2

3

4

5

6

7

W
(p

)-
W

fr
ee

(p
)

 10 points, ε=0.1 %

0.18 0.2 0.22 0.24 0.26

p [GeV]
0

2

4

6

8

W
(p

)-
W

fr
ee

(p
)

 10 points, ε=0.25 %

0.18 0.2 0.22 0.24 0.26

p [GeV]
0

5

10

W
(p

)-
W

fr
ee

(p
)

 10 points, ε=0.5 %

Figure 8: Probability distributions, obtained from the data that contain errors (see the text for

the details). The central data points are the same as in figure 5. As seen from the figure, the

resonance structure is effectively washed out already at a relative error of 0.5% in the data or even

earlier.

Our method provides an easy tool to render the analysis transparent in this case as well.

The procedure is described below.

We start from the data equidistantly distributed in the interval MπL ∈ [1.9, 4.5] (5 or

10 data points, as in figure 8). From each data point Ei = E(Li) we further produce a

statistical sample of 50 data points at a same Li, which are normally distributed around the
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Figure 9: The same as in figure 8 at a relative error ε = 0.5%. A polynomial fit to the random

data was used prior to producing the probability distribution. The improvement as compared to

figure 8 is clearly visible. The peak is washed out approximately at ε ≃ 0.75% · · ·1%.

central value Ei with the standard deviation σi = εEi. The figure 8 shows the probability

distributions obtained from these randomly produced data, for three different values of

ε = 0.1%, 0.25%, 0.5%. Spline interpolation is used between data points. It is evident

that the nice resonance structure, which was seen in the probability distribution (data

with no errors), is washed out already at quite small values of the relative error assigned.

Interestingly enough, the increase of the number of data points does not lead to an improved

accuracy. The reason for this is that we treat the neighboring data points to be statistically

independent. If the distance between the neighboring points is decreased, the fluctuations

in the derivative of the eigenvalues increase and this leads to the increase of the statistical

noise in the probability distribution (see figure 8).

These statistical fluctuations can be suppressed to some extent if we perform a smooth

(e.g. polynomial) interpolation of random data prior to calculation of the probability dis-

tribution. This is demonstrated in figure 9 where the random data on the spectrum were

first fitted as p(L) = a0 +a1L+a2L
2+a3L

3 prior to producing the probability distribution.

The situation clearly improves, especially in the case of 10 data points. Still, from figures 8

and 9 one has to conclude that a very accurate measurement of the spectrum is indeed

needed to reliably extract the properties of the ∆-resonance.

6. Conclusions

(i) Within the covariant non-relativistic effective field theory [43] we have derived

Lüscher’s formula for scattering of spin-1/2 and spin-0 particles. The partial-wave

expansion is performed, and the cubic symmetry on the lattice is used to reduce the

resulting matrix equations.

(ii) The notion of probability distribution for the finite-volume spectrum of the Hamil-

tonian is introduced. It is shown that near the resonance energy the probability

distribution behaves similar to the scattering cross section in the infinite volume: it

produces a Breit-Wigner peak at the resonance energy with the same width.
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(iii) The probability distribution, which is directly constructed from the energy levels,

does not contain any prior bias. For this reason, the analysis carried out with the

use of this method can be used to judge whether a clean extraction of the resonance

parameters from the available data is possible.

(iv) The probability distribution does not carry more or less physical information than

Lüscher’s formula. The advantage of the probability distribution is its visual trans-

parency. The choice of the method in the actual analysis is dictated by convenience.

(v) In the present paper we apply the method of probability distribution to the case of

the ∆-resonance. We observe that the distribution after subtracting the background

corresponding to the free motion of the πN pair develops a nice resonance structure

in accordance with the exact prediction based on Lüscher’s formula — even though

the avoided level crossing is completely washed out.

(vi) It is possible to achieve a satisfactory description of the resonance position and shape

even with few data points, provided they are chosen close enough to the resonance

and are measured very accurately. Measurement of only the ground state suffices

(inclusion of the excited levels provides additional check on the results). To conclude,

the results of the paper clearly demonstrate that the extraction of the resonance

parameters from the measurement of the finite-volume energy spectrum by using

Lüscher’s method is indeed a feasible although difficult task.
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A. Basis vectors of the cubic group

In this appendix we collect the basic formulae for the representations of the cubic group,

which are needed for partial diagonalization of Lüscher’s formula.

Consider first shortly the case without spin. The group O of the symmetries of the

3-dimensional cube has 24 elements (no reflections included), which fall into 5 conjugacy

classes: I (identity), 3C2, 8C3, 6C4 and 6C ′
2 (see, e.g. [45, 48]). We find it convenient to

parametrize the group elements by specifying three Euler angles α, β, γ. Alternatively, the

element can be parametrized, e.g., by specifying the axis n and the rotation angle ω. The

table 2 collects the values of the group parameters.

The irreducible representations of the rotation group DL, L = 0, 1, · · · are defined in

the 2L + 1-dimensional space spanned on the basis vectors |LM〉. These representations

are reducible under the cubic group O and can be decomposed into the irreducible rep-

resentations of the latter denoted by Γ = A1, A2, E, T1 and T2. The dimension of these

representations N(Γ) is equal to 1,1,2,3,3, respectively.
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Class i n ω α β γ

I 1 any 0 0 0 0

8C3 2 (1, 1, 1) −2π/3 −π/2 −π/2 0

3 (1, 1, 1) 2π/3 0 π/2 π/2

4 (−1, 1, 1) −2π/3 0 −π/2 −π/2

5 (−1, 1, 1) 2π/3 π/2 π/2 0

6 (−1,−1, 1) −2π/3 −π/2 π/2 0

7 (−1,−1, 1) 2π/3 0 −π/2 π/2

8 (1,−1, 1) −2π/3 0 π/2 −π/2

9 (1,−1, 1) 2π/3 π/2 −π/2 0

6C4 10 (1, 0, 0) −π/2 −π/2 −π/2 π/2

11 (1, 0, 0) π/2 π/2 −π/2 −π/2

12 (0, 1, 0) −π/2 0 −π/2 0

13 (0, 1, 0) π/2 0 π/2 0

14 (0, 0, 1) −π/2 −π/2 0 0

15 (0, 0, 1) π/2 π/2 0 0

6C ′
2 16 (0, 1, 1) −π −π/2 −π/2 −π/2

17 (0,−1, 1) −π −π/2 π/2 −π/2

18 (1, 1, 0) −π −π/2 −π 0

19 (1,−1, 0) −π 0 π −π/2

20 (1, 0, 1) −π 0 π/2 −π

21 (−1, 0, 1) −π 0 −π/2 −π

3C2 22 (1, 0, 0) −π π π 0

23 (0, 1, 0) −π 0 −π 0

24 (0, 0, 1) −π 0 0 −π

Table 2: Parameterization of the elements of cubic group. The vector n should be normalized to

unity.

In order to construct the basis of the irreducible representations, we consider the linear

operator PΓ,L
αβ , whose matrix elements in the space spanned by the vectors |LM〉 are given by

(PΓ,L
αβ )MM ′ =

24
∑

i=1

(RΓ
i )αβ DL

MM ′(αi, βi, γi) , (A.1)

where DL
MM ′(αi, βi, γi) are Wigner D-functions, and (RΓ

i )αβ , α, β = 1 · · ·N(Γ) denote the

matrices of the irreducible representations of cubic group

A1: A1 is the trivial 1-dimensional representation Ri = 1.

A2: Ri = −1 for the conjugacy classes 6C4 and 6C ′
2, Ri = 1 otherwise.
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E: The matrices in this representation are two-dimensional and real:

Ri = 1 for i = 1, 22, 23, 24,

Ri = σ3 for i = 14, 15, 18, 19,

Ri = − cos
π

3
1 + i sin

π

3
σ2 for i = 2, 5, 6, 9,

Ri = − cos
π

3
1− i sin

π

3
σ2 for i = 3, 4, 7, 8,

Ri = − cos
π

3
σ3 − sin

π

3
σ1 for i = 10, 11, 16, 17,

Ri = − cos
π

3
σ3 + sin

π

3
σ1 for i = 12, 13, 20, 21. (A.2)

T1: (Ri)αβ = exp

(

−in(i)Jωi

)

αβ

= cos ωiδαβ + (1− cos ωi)n
(i)
α n

(i)
β − sin ωiεαβγn

(i)
γ , where

(Jγ)αβ = −iεαβγ denote the group generators.

T2: The matrices are the same as in the irreducible representation T1, except the change

of sign for the conjugacy classes 6C4 and 6C ′
2.

The basis vectors of the irreducible representations are obtained by acting with the

linear operator given by eq. (A.1) at a fixed β and varying α on an arbitrary vector φM

from the space spanned by the vectors |LM〉

(eΓ,L,β
α )M = N

L
∑

M ′=−L

(PΓ,L
αβ )MM ′φM ′ , α = 1 · · ·NΓ , β fixed , (A.3)

where N denotes the normalization constant. It is fixed so that the basis vectors obey the

orthonormality condition
∑

M

(eΓ′,L,β
α′ )∗M (eΓ,L,β

α )M = δα′αδΓ′Γ . (A.4)

If the representation Γ is not contained in DL, the action of the projection operator on φM

gives 0. The equations (A.3) and (A.4) do not fix a common phase of the basis vectors,

belonging to the same representation labeled with L,Γ — this can be freely chosen. If a

representation Γ enters more than once in DL, an additional orthogonalization of the basis

vectors, belonging to the same representation, is necessary. Inclusion of parity is trivial.

The basis vectors are simultaneously the eigenvectors of S2 with the eigenvalue P = (−)L.

In table 3 we list the basis vectors of the irreducible representations of the cubic group

up to L = 4, obtained from eq. (A.3). The phases are chosen so that after the partial

diagonalization of Lüscher’s equation, the entries of table E.2 in ref. [19] are reproduced.

Note also that our basis differs from the one given in ref. [49] and can not be reduced to

it with a single unitary transformation for all L. We have also checked that the use of the

basis from ref. [49] does not lead to eq. (3.4): e.g., the different irreducible representations

turn out not to be orthogonal.

Our basis vectors can be transformed into those listed in ref. [50] by unitary trans-

formations. Since in that article the basis vectors of the same irreducible representation,
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Γ L α Basis vectors

A+
1 0 1 |0, 0〉

T−
1 1 1 1√

2
(|1,−1〉 − |1, 1〉)

2 i√
2
(|1,−1〉 + |1, 1〉)

3 |1, 0〉
T+

2 2 1 − 1√
2
(|2,−1〉 + |2, 1〉)

2 i√
2
(|2,−1〉 − |2, 1〉)

3 − 1√
2
(|2,−2〉 − |2, 2〉)

E+ 2 1 |2, 0〉
2 1√

2
(|2,−2〉 + |2, 2〉)

T−
1 3 1

√
5

4 (|3,−3〉 − |3, 3〉) −
√

3
4 (|3,−1〉 − |3, 1〉)

2 −i
√

5
4 (|3,−3〉 + |3, 3〉) − i

√
3

4 (|3,−1〉 + |3, 1〉)
3 |3, 0〉

T−
2 3 1 −

√
3

4 (|3,−3〉 − |3, 3〉) −
√

5
4 (|3,−1〉 − |3, 1〉)

2 −i
√

3
4 (|3,−3〉 + |3, 3〉) + i

√
5

4 (|3,−1〉 + |3, 1〉)
3 1√

2
(|3,−2〉 + |3, 2〉)

A−
2 3 1 1√

2
(|3,−2〉 − |3, 2〉)

T+
1 4 1 −1

4 (|4,−3〉 + |4, 3〉) −
√

7
4 (|4,−1〉 + |4, 1〉)

2 i
4 (|4,−3〉 − |4, 3〉) − i

√
7

4 (|4,−1〉 − |4, 1〉)
3 1√

2
(|4,−4〉 − |4, 4〉)

T+
2 4 1

√
7

4 (|4,−3〉 + |4, 3〉) − 1
4 (|4,−1〉 + |4, 1〉)

2 i
√

7
4 (|4,−3〉 − |4, 3〉) + i

4 (|4,−1〉 − |4, 1〉)
3 1√

2
(|4,−2〉 − |4, 2〉)

E+ 4 1 −
√

42
12 (|4,−4〉 + |4, 4〉) +

√
15
6 |4, 0〉

2 − 1√
2
(|4,−2〉 + |4, 2〉)

A+
1 4 1

√
30

12 (|4,−4〉 + |4, 4〉) +
√

21
6 |4, 0〉

Table 3: The normalized basis of the irreducible representations of the cubic group: integer values

of the angular momentum.

belonging to different values of L, are not fully displayed, we can not carry out this com-

parison to the end.

In order to include the particles with spin, one has to consider the double cover of O

denoted by 2O, which can be constructed by adding a negative identity for ±2π rotations

to the group O [45]. One ends up with a group of 48 elements divided into 8 conjugacy

classes (see table 4) and, accordingly, with 8 irreducible representations. In addition to the

previously considered 5, one has 3 new representations denotes as Γ = G1, G2,H with the
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Class i n ω Class i n ω

I 1 any 0 8C3 28 (1, 1, 1) 4π/3

6C4 2 (1, 0, 0) π 29 (−1, 1, 1) 4π/3

3 (0, 1, 0) π 30 (−1,−1, 1) 4π/3

4 (0, 0, 1) π 31 (1,−1, 1) 4π/3

5 (1, 0, 0) −π 32 (1, 1, 1) −4π/3

6 (0, 1, 0) −π 33 (−1, 1, 1) −4π/3

7 (0, 0, 1) −π 34 (−1,−1, 1) −4π/3

6C ′
8 8 (1, 0, 0) π/2 35 (1,−1, 1) −4π/3

9 (0, 1, 0) π/2 12C ′
4 36 (0, 1, 1) π

10 (0, 0, 1) π/2 37 (0,−1, 1) π

11 (1, 0, 0) −π/2 38 (1, 1, 0) π

12 (0, 1, 0) −π/2 39 (1,−1, 0) π

13 (0, 0, 1) −π/2 40 (1, 0, 1) π

6C8 14 (1, 0, 0) 3π/2 41 (−1, 0, 1) π

15 (0, 1, 0) 3π/2 42 (0, 1, 1) −π

16 (0, 0, 1) 3π/2 43 (0,−1, 1) −π

17 (1, 0, 0) −3π/2 44 (1, 1, 0) −π

18 (0, 1, 0) −3π/2 45 (1,−1, 0) −π

19 (0, 0, 1) −3π/2 46 (1, 0, 1) −π

8C6 20 (1, 1, 1) 2π/3 47 (−1, 0, 1) −π

21 (−1, 1, 1) 2π/3 J 48 any 2π

22 (−1,−1, 1) 2π/3

23 (1,−1, 1) 2π/3

24 (1, 1, 1) −2π/3

25 (−1, 1, 1) −2π/3

26 (−1,−1, 1) −2π/3

27 (1,−1, 1) −2π/3

Table 4: Parameterization of the elements of the double cover of the cubic group. The vector n

should be normalized to unity.

dimension N(Γ) = 2, 2, 4, respectively. In case of the half-integer total momentum J , one

needs to consider only these additional even-dimensional representations.

The matrices of the irreducible representations G1, G2,H are given by [45]

G1: (Ri)αβ = exp

(

− i
2 n(i)

σ ωi

)

αβ

= δαβ cos ωi

2 − in(i)
σαβ sin ωi

2 .

G2: the matrices are the same except change the sign in the conjugacy classes 6C8, 6C
′
8

and 12C ′
4.

H: the matrices (Ri)αβ = exp

(

−in(i)J
3

2 ωi

)

αβ

where J
3

2

αβ denote the group generators

in spin-3/2 case.
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Γ± J α Basis vectors

G1± 1/2 1 |12 1
2〉±

2 |12 − 1
2 〉±

G1± 7/2 1
√

15
6 |72 − 7

2〉± +
√

21
6 |72 1

2 〉±

2 −
√

21
6 |72 − 1

2〉± −
√

15
6 |72 7

2〉±

G2± 5/2 1
√

30
6 |52 − 3

2〉± −
√

6
6 |52 5

2〉±

2 −
√

6
6 |52 − 5

2〉± +
√

30
6 |52 3

2〉±

G2± 7/2 1 −1
2 |72 − 3

2 〉± +
√

3
2 |72 5

2〉±

2 −
√

3
2 |72 − 5

2 〉± + 1
2 |72 3

2〉±

H± 3/2 1 |32 3
2〉±

2 |32 1
2〉±

3 |32 − 1
2 〉±

4 |32 − 3
2 〉±

H± 5/2 1 −
√

30
6 |52 − 5

2〉± −
√

6
6 |52 3

2 〉±

2 |52 1
2〉±

3 − |52 − 1
2〉±

4
√

6
6 |52 − 3

2〉± +
√

30
6 |52 5

2〉±

H± 7/2 1 1
2 |72 − 5

2〉± +
√

3
2 |72 3

2〉±

2
√

21
6 |72 − 7

2〉± −
√

15
6 |72 1

2 〉±

3 −
√

15
6 |72 − 1

2〉± +
√

21
6 |72 7

2〉±

4
√

3
2 |72 − 3

2〉± + 1
2 |72 5

2〉±

Table 5: Basis functions of irreducible representations of 2O in terms of the functions |JM〉±
defined in section 3.

The counterpart of eq. (A.1) in case of the half-integer total momentum J is

(PΓ,J
αβ )MM ′ =

48
∑

i=1

(RΓ
i )αβ DJ

MM ′(αi, βi, γi) . (A.5)

Acting with the linear operator PΓ,J
αβ on an arbitrary linear combination of the basis

vectors |JM〉± defined in section 3, we obtain the basis of the irreducible representations

G1, G2 and H. Inclusion of parity is again trivial, since the basis vectors |JM〉± are the

eigenvectors of parity, with the eigenvalue P = ±1 = (−)L. Up to the value J = 7
2 , these

basis vectors are listed in table 5

Using this basis to partially diagonalize Lüscher’s equation, we finally arrive at the

results displayed in table 1.
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